Supplementary Information Evolutionary History of Modern Samoans

Authors: Daniel N. Harris^{1,2,3}, Michael D. Kessler^{1,2,3}, Amol C. Shetty^{1,2,3}, Daniel E. Weeks^{4,5}, Ryan L. Minster⁴, Sharon Browning⁶, Ethan E. Cochrane⁷, Ranjan Deka⁸, Nicola L. Hawley⁹, Muagututi'a Sefuiva Reupena¹⁰, Take Naseri¹¹, Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Population Genetics Working Group, Stephen T. McGarvey^{12,13}, and Timothy D. O'Connor^{1,2,3*}

Supplementary Text

Supplementary Text 1. Papuans introduced Denisovan ancestry into Remote Oceania

Papuan populations have the largest proportion of Denisovan ancestry of any studied human population (1), and the introgression of this ancestry is estimated to have occurred approximately 44,000 years ago (2). Therefore, we hypothesize that it is likely that Papuan admixture introduced Denisovan haplotypes into Samoans and other Austronesian groups (3). Due to the recent divergence between East Asian and Austronesian populations, and the low level of Denisovan ancestry in East Asian populations (1, 4, 5), we utilize the Han Chinese in our D statistic (i.e. D(Chimpanzee, Denisovan; Han, X)) as the alternative population to test for the presence of Denisovan ancestry in Samoa. Therefore, any tests identifying a Denisovan admixture signal indicate the gene flow occurred after the divergence of East Asians and Austronesians (Figure 2). In support of our hypothesis, we find a strong correlation between an Austronesian individual's Papuan ancestry proportion and their D-statistic test for Denisovan ancestry, after controlling for Neanderthal ancestry ($P_{Den} < 2x10^{-16}$, $\beta_{Den} = 18.654$, Figure 2). However, we find no corresponding correlation with Neanderthal ancestry ($P_{Nea} = 0.981$). These results suggest that the Denisovan ancestry in Samoans and other Austronesians arrived through Papuan admixture in Oceania, which is consistent with Reich, et al. (3), and might even be impacting Austronesian phenotypes. Due to the large sample size of our Samoan dataset and their extensive phenotypic profiles (6), these Samoan individuals represent an excellent cohort to further study Denisovan admixture and its potential impact on modern human phenotypes (7).

Supplementary Text 2. Greater Admixture and Genetic Diversity in Urban Regions

The large sample size and dense geographic sampling of Samoans in this study gives us the statistical power to examine differences in the admixture histories between the two main Samoan islands. We find that the AUA census region has the greatest amount of admixture from non-Samoan sources, followed by NWU, ROU, and SAV (Figure S8), and is consistent with the urban regions (AUA and NWU) being the main locations of European and East Asian migration and introgression (8, 9). Furthermore, this pattern of greater admixture in urban areas is observed in other global areas with histories of European colonization (10). Interestingly, the NWU region has the most East Asian admixture while AUA has the most European and African ancestry (Figure S8).

The average number of heterozygous sites is greatest in the urban regions, and greater on Upolu than on Savai'i. However, this pattern is eliminated when admixed samples are removed from the analysis, which results in SAV and NWU having the greatest heterozygosity (Table S3), and supports the idea that admixture greatly impacts heterozygosity patterns between census regions. Singleton variant patterns are similar to those seen across heterozygous sites, except that singleton patterns are relatively similar in admixed and non-admixed individuals (Table S4). Given the young age of singletons, this suggests that recent changes have led to Upolu having greater genetic diversity than Savai'i. This also indicates that Apia was the main population center of Samoa prior to European arrival, since the difference in singletons is not entirely driven by admixture. However, European admixture is still likely to be a contributor to this difference in genetic diversity, since the differences in singleton totals between regions is greater when admixed samples are included in the analysis.

Supplementary Tables and Figures:

Table S1. Reference population sample size and general location from Lazaridis, *et al.* (11) and Pugach, *et al.* (12). All non-Oceanic populations are grouped into their main continental region. Polynesian and Polynesian Outliers are a sub-classification of the Austronesian ancestral source.

Population	Sample Size	Country	Ancestral Source
African	309	NA	NA
Caucasus	52	NA	NA
CentralAsian/Siberian	244	NA	NA
East Asian	274	NA	NA
European	537	NA	NA
Middle Eastern	187	NA	NA
Native American	77	NA	NA
South Asian	262	NA	NA
Australian	2	Australia	Australian
Australian_WGA	5	Australia	Australian
Borneo	9	Indonesia	Austronesian
Semende	8	Indonesia	Austronesian
Buka	7	Papua New Guinea	Austronesian
Kove	8	Papua New Guinea	Austronesian
Lavongai	15	Papua New Guinea	Austronesian
Madak	8	Papua New Guinea	Austronesian
Mamusi	13	Papua New Guinea	Austronesian
Mamusi_Paleabu	5	Papua New Guinea	Austronesian
Mangseng	5	Papua New Guinea	Austronesian
Manus	2	Papua New Guinea	Austronesian
Melamela	6	Papua New Guinea	Austronesian
Mengen	9	Papua New Guinea	Austronesian
Mussau	10	Papua New Guinea	Austronesian
Nailik	7	Papua New Guinea	Austronesian
Nakanai_Bileki	5	Papua New Guinea	Austronesian
Nakanai_Loso	5	Papua New Guinea	Austronesian
Notsi	7	Papua New Guinea	Austronesian
Saposa	8	Papua New Guinea	Austronesian
Теор	7	Papua New Guinea	Austronesian
Tigak	7	Papua New Guinea	Austronesian
Tolai	18	Papua New Guinea	Austronesian
Mamanwa	9	Philippines	Austronesian
Mamanwa1	5	Philippines	Austronesian
Choiseul	7	Solomon Islands	Austronesian
Gela	6	Solomon Islands	Austronesian
Isabel	7	Solomon Islands	Austronesian

Kolombangara	4	Solomon Islands	Austronesian
Makira	6	Solomon Islands	Austronesian
Malaita	6	Solomon Islands	Austronesian
Ranongga	6	Solomon Islands	Austronesian
Santa_Cruz	7	Solomon Islands	Austronesian
Ontong_Java	7	Solomon Islands	Polynesian Outliers
RenBel	7	Solomon Islands	Polynesian Outliers
Tikopia	6	Solomon Islands	Polynesian Outliers
Tongan	6	Tonga	Polynesian
Ata	7	Papua New Guinea	Papuan
Baining_Malasait	4	Papua New Guinea	Papuan
Baining_Marabu	8	Papua New Guinea	Papuan
Bougainville_South	2	Papua New Guinea	Papuan
Kol_New_Britain	2	Papua New Guinea	Papuan
Kuot_Kabil	5	Papua New Guinea	Papuan
Kuot_Lamalaua	4	Papua New Guinea	Papuan
Nasioi	10	Papua New Guinea	Papuan
New_Guinea	19	Papua New Guinea	Papuan
Papuan_1	14	Papua New Guinea	Papuan
Papuan_2	4	Papua New Guinea	Papuan
Papuan_Central	5	Papua New Guinea	Papuan
Papuan_Gulf	3	Papua New Guinea	Papuan
Sulka	14	Papua New Guinea	Papuan
Russell	3	Solomon Islands	Papuan
Savo	7	Solomon Islands	Papuan
Vella_Lavella	6	Solomon Islands	Papuan

Table S2. D-statistic of the form D(Yoruba, Papuan Source, Han, Samoan) tests for the presence of Papuan admixture in Samoans from five different Papuan populations.

Papuan Source	D	SE	Z	
New_Guinea	0.0575	0.001782	32.284	
Papuan_2	0.0582	0.001897	30.668	
Papuan_1	0.0585	0.001768	33.081	
Baining Malasait	0.0617	0.001875	32.889	
Baining Marabu	0.0620	0.001869	33.160	

Table S3. Average heterozygosity (Het.) per census region of all unrelated Samoans (ALL) and unrelated Samoans with 99% of their genome attributed to the Austronesian ADMIXTURE cluster (Filter), with standard error calculations (SE) and sample size.

Census Region	ALL Sample Size	ALL Het.	ALL SE	Filter Sample Size	Filter Het.	Filter SE
AUA	230	1,787,773.448	5,677.745	76	1,728,183.776	1,008.128
NWU	285	1,768,880.326	3,081.174	102	1,730,624.500	993.036
ROU	258	1,761,150.329	3,039.890	121	1,727,320.545	1,074.581
SAV	196	1,751,132.362	2,984.276	120	1,728,266.267	13,38.879

Table S4. Average number of singletons (Sing.) per census region of all unrelated Samoans (ALL) and unrelated Samoans with 99% of their genome attributed to the Austronesian ADMIXTURE cluster (Filter), with standard error calculations (SE) and sample size.

Census Region	ALL Sample Size	ALL Sing.	ALL SE	Filter Sample Size	Filter Sing.	Filter SE
AUA	230	8,512.670	1,078.854	76	2,114.289	20.027
NWU	285	5,616.568	299.840	102	2,081.618	17.468
ROU	258	5,396.903	378.417	121	2,058.421	18.105
SAV	196	4,139.189	336.662	120	1,938.675	23.526

Table S5. Samoan archaeological record and other historical events. The icons correspond to those in Figure 4 plus some additional time points of interest.

Icon	Event	Date (years ago)
	Upolu island settled by people with Lapita pottery (13-15).	2,750-2,880
	Remaining islands sparsely settled by relatively isolated populations with plainware pottery (16-21).	2,100-2,700
1	Possible migration of population(s) into Samoa from the west, likely through the Micronesian Caroline islands (17).	1,500-2,000
8.0	Pottery disappears (22, 23).	1,000-1,500
	Tutuila volcanic activity including 20 cm thick ashfall on Tafuna plain (24, 25).	1,300-1,400
	Inter-archipelago voyaging increases dramatically with Samoan basalt artifacts found across the central Pacific; East Polynesia colonized from Samoa and Tonga (19, 26, 27).	800-1,000
*	The fast rise of regionalized Samoan chiefdoms, Larger coastal villages, monumental stone/earth mounds, inland fortified settlements, landscape modifications including terraces and agricultural infrastructure originate. (23, 28).	500-1,000
	Traditional history records Tongan incursions into Samoa, coeval with the developing Tongan Maritime chiefdom.	850
	Arrival of missionaries and sustained contact with Europeans, population concentrated in coastal areas; periods of massive population decline caused by European disease.	230

Figure S1. Map of islands in Near Oceania and Remote Oceania.

Figure S2. Map of the Samoan sampling locations with topographic and road information. Colors of each sampling site correspond to their census region (Urban regions: Apia Urban Area (AUA) and North West Upolu (NWU), and rural regions: Rest of Upolu (ROU) and Savai'i (SAV)), and the black lines represent the major roads.

Figure S3. Samoans are closely related to East Asian and Oceanic populations. Three dimensional PCA that displays PC1 on the X axis, PC2 on the Y axis, and PC3 on the Z axis. Samoans are represented by black points. OCE represents Oceanic samples, AMR represents Native American samples, EAS represents East Asian samples, CAS represents Central Asian/Siberian samples, SAS represents South Asian samples, EUR represents European samples, AFR represents African samples, MID represents Middle Eastern samples, and CAU represents Caucusus samples.

Figure S4. Samoans are most closely related to Tongans within Oceania. PC1 (X axis) and PC2 (Y axis) from a PCA projection of Samoans with at least 99% of their genome attributed to the Austronesian ADMIXTURE cluster (Figure 1A).

Figure S5. ADMIXTURE sample reference populations. Here we present one example population representative of each major geographic region from the entire merged dataset (see STAR Methods). From right to left: African, European, South Asian, Native American, Central Asian/Siberian, East Asian, Papuan, and Austronesian. Each bar represents one individual and the colors correspond to each ancestral cluster, whose interpretation is below the plot. The magnitude of each cluster is the proportion of each individuals' genome attributed to that cluster.

Figure S6. Weak population structure between islands identified through PCA. PC1 and PC2 of all individuals with at least 99% of their genome attributed to the Austronesian ADMIXTURE cluster (Figure 2A). Colors correspond to the individuals' census region. P-values are those that were ≤ 0.05 from an ANOVA Tukey post-hoc analysis. The Cohen's d estimated effect sizes for SAV-AUA, SAV-NWU, and SAV-ROU comparisons along PC1 are 0.7168478, 0.7463582, and 0.8502464 respectively.

Figure S7. Strong population structure between islands identified with rare variants. Heatmap of the average Jaccard index (29) of F2 variant sharing within and between islands of all individuals with at least 99% of their genome attributed to the Austronesian ADMIXTURE cluster (Figure 2A). All values in the heatmap were multiplied by 10,000 for visualization.

Figure S8 Census region heatmap representation of rare variant sharing (left) and IBD segment sharing (right) with brackets that represents the pair of values whose difference has a P < 0.05 calculated through permutations of census region labels. Rare variant sharing p-values < 0.05 pertain to the following tests: ROU sharing with AUA and SAV, ROU sharing with AUA and NWU, and SAV sharing with AUA and ROU. IBD segment sharing p-values < 0.05 only pertain to ROU sharing with AUA and SAV.

Figure S9. Average non-Samoan cluster ADMIXTURE (30, 31) proportions for each Samoan census region.

Resources

- 1. Meyer M, et al. (2012) A high-coverage genome sequence from an archaic Denisovan individual. *Science* 338(6104):222-226.
- 2. Malaspinas AS, *et al.* (2016) A genomic history of Aboriginal Australia. *Nature* 538(7624):207-214.
- 3. Reich D, et al. (2011) Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. *American journal of human genetics* 89(4):516-528.
- 4. Prufer K, *et al.* (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. *Nature* 505(7481):43-49.
- 5. Browning SR, Browning BL, Zhou Y, Tucci S, & Akey JM (2018) Analysis of Human Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture. *Cell* 173(1):53-61 e59.
- 6. Minster RL, et al. (2016) A thrifty variant in CREBRF strongly influences body mass index in Samoans. *Nature genetics* 48(9):1049-1054.
- 7. Simonti CN, *et al.* (2016) The phenotypic legacy of admixture between modern humans and Neandertals. *Science* 351(6274):737-741.
- 8. Davidson JW (1967) Samoa mo Samoa (Oxford University Press).
- 9. Meleisea M (1987) The making of modern Samoa: traditional authority and colonial administration in the history of Western Samoa (editorips@ usp. ac. fj).
- 10. Harris DN, et al. (2018) Evolutionary genomic dynamics of Peruvians before, during, and after the Inca Empire. Proceedings of the National Academy of Sciences of the United States of America 115(28):E6526-E6535.
- 11. Lazaridis I, *et al.* (2014) Ancient human genomes suggest three ancestral populations for present-day Europeans. *Nature* 513(7518):409-413.
- 12. Pugach I, et al. (2018) The Gateway from Near into Remote Oceania: New Insights from Genome-Wide Data. *Molecular biology and evolution* 35(4):871-886.
- 13. Petchey FJ (2001) Radiocarbon determinations from the Mulifanua Lapita site, Upolu, western Samoa. *Radiocarbon* 43:63-68.
- 14. Petchey FJ (1995) The Archaeology of Kudon: Archaeological Analysis of Lapita Ceramics from Mulifanua, Samoa and Sigatoka, Fiji. Masters (University of Auckland, Auckland).
- 15. Green RC (1974) Pottery from the Lagoon at Mulifanua, Upolu (Report 33). *Archaeology in Western Samoa*, eds Green RC & Davidson JM (Auckland Institute and Museum, Auckland), Vol II, pp 170-175.
- 16. Rieth TM & Hunt TL (2008) A radiocarbon chronology for Samoan prehistory. *Journal of Archaeological Science* 35(7):1901-1927.
- 17. Addison DJ & Matisoo-Smith EA (2010) Rethinking Polynesians origins: a West-Polynesia Triple-I Model. *Archaeology in Oceania* 45(1):1-12.
- 18. Cochrane EE, Rieth TM, & Dickinson WR (2013) Plainware ceramics from Sāmoa: Insights into ceramic chronology, cultural transmission, and selection among colonizing populations. *Journal of Anthropological Archaeology* 32(4):499-510.
- 19. Cochrane EE & Rieth TM (2016) Sāmoan artefact provenance reveals limited artefact transfer within and beyond the archipelago. *Archaeology in Oceania* 51(2):150-157.
- 20. Clark JT, et al. (2016) Refining the chronology for west polynesian colonization: New data from the Samoan archipelago. *Journal of Archaeological Science: Reports* 6:266-274.
- 21. Burley DV, Sheppard PJ, & Simonin M (2011) Tongan and Samoan volcanic glass: pXRF analysis and implications for constructs of ancestral Polynesian society. *Journal of Archaeological Science* 38(10):2625-2632.

- 22. Clark JT (1996) Samoan Prehistory in Review. *Oceanic Culture History: Essays in Honour of Roger Green,* New Zealandd Journal of Archaeology Special Publication, eds Davidson J, Irwin G, Leach F, Pawley AK, & Brown D (New Zealand Archaeological Association, Dunedin), pp 445-460.
- 23. Burley DV & Addison DJ (2018) Tonga and Sāmoa in Oceanic Prehistory: Contemporary Debates and Personal Perspectives. in *The Oxford Handbook of Prehistoric Oceania*, eds Cochrane EE & Hunt TL (Oxford University Press, New York), pp 231-251.
- 24. Addison DJ, Tago T, Toloa J, & Pearthree E (2006) Ceramic Deposit Below Fifth to Sixth Century AD Volcanic Ash Fall at Pava'ia'i, Tutuila Island, American Samoa: Preliminary Results from Site AS-31-171. *New Zealand Journal of Archaeology* 27:5-18.
- 25. Addison DJ & Asaua TS (2006) One Hundred New Dates from Tutuila and Manu'a: Additional Data Addressing Chronological Issues in Sāmoan Prehistory. *The Journal of Sāmoan Studies* 2:95-117.
- 26. Clark GR, et al. (2014) Stone tools from the ancient Tongan state reveal prehistoric interaction centers in the Central Pacific. *Proceedings of the National Academy of Sciences* 111(29):10491-10496.
- 27. Wilmshurst JM, Hunt TL, Lipo CP, & Anderson AJ (2011) High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. *Proceedings of the National Academy of Sciences* 108(5):1815-1820.
- 28. Quintus SJ & Cochrane EE (2017) Pre-Contact Samoan Cultivation Practices in Regional and Theoretical Perspective. *The Journal of Island and Coastal Archaeology*:1-27.
- 29. Prokopenko D, *et al.* (2016) Utilizing the Jaccard index to reveal population stratification in sequencing data: a simulation study and an application to the 1000 Genomes Project. *Bioinformatics* 32(9):1366-1372.
- 30. Alexander DH, Novembre J, & Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. *Genome research* 19(9):1655-1664.
- 31. Zhou H, Alexander D, & Lange K (2011) A quasi-Newton acceleration for high-dimensional optimization algorithms. *Statistics and computing* 21(2):261-273.

<u>Trans-Omics for Precision Medicine (TOPMed) Consortium Banner Authors</u>

Abe, Namiko New York Genome Center

Abecasis, Gonçalo University of Michigan

Albert, Christine Brigham & Women's Hospital, Cedars Sinai

Almasy, Laura Children's Hospital of Philadelphia, University of Pennsylvania

Alonso, Alvaro Emory University

Ament, Seth University of Maryland

Anderson, Peter University of Washington

Anugu, Pramod University of Mississippi

Applebaum-Bowden,

Deborah

National Institutes of Health

Arking, Dan Johns Hopkins University

Arnett, Donna K University of Kentucky

Ashley-Koch, Allison Duke University

Aslibekyan, Stella University of Alabama

Assimes, Tim Stanford University

Auer, Paul University of Wisconsin Milwaukee

Avramopoulos, Dimitrios Johns Hopkins University

Barnard, John Cleveland Clinic

Barnes, Kathleen University of Colorado at Denver

Barr, R. Graham Columbia University

Barron-Casella, Emily Johns Hopkins University

Beaty, Terri Johns Hopkins University

Becker, Diane Johns Hopkins University

Becker, Lewis Johns Hopkins University

Beer, Rebecca National Heart, Lung, and Blood Institute, National Institutes of

Health

Begum, Ferdouse Johns Hopkins University

Beitelshees, Amber University of Maryland

Benjamin, Emelia Boston University, Massachusetts General Hospital

Bezerra, Marcos Fundação de Hematologia e Hemoterapia de Pernambuco -

Hemope

Bielak, Larry University of Michigan

Bis, Joshua University of Washington

Blackwell, Thomas University of Michigan

Blangero, John University of Texas Rio Grande Valley School of Medicine

Boerwinkle, Eric University of Texas Health at Houston

Bowden, Donald W. Wake Forest Baptist Health

Bowler, Russell National Jewish Health

Brody, Jennifer University of Washington

Broeckel, Ulrich Medical College of Wisconsin

Broome, Jai University of Washington

Bunting, Karen New York Genome Center

Burchard, Esteban University of California, San Francisco

Buth, Erin University of Washington

Cade, Brian Brigham & Women's Hospital

Cardwell, Jonathan University of Colorado at Denver

Carty, Cara Women's Health Initiative

Casaburi, Richard University of California, Los Angeles

Casella, James Johns Hopkins University

Chaffin, Mark Broad Institute

Chang, Christy University of Maryland

Chasman, Daniel Brigham & Women's Hospital

Chavan, Sameer University of Colorado at Denver

Chen, Bo-Juen New York Genome Center

Chen, Wei-Min University of Virginia

Chen, Yii-Der Ida Lundquist Institute

Cho, Michael Brigham & Women's Hospital

Choi, Seung Hoan Broad Institute

Chuang, Lee-Ming National Taiwan University

Chung, Mina Cleveland Clinic

Conomos, Matthew P. University of Washington

Cornell, Elaine University of Vermont

Correa, Adolfo University of Mississippi

Crandall, Carolyn University of California, Los Angeles

Crapo, James National Jewish Health

Cupples, L. Adrienne Boston University

Curran, Joanne University of Texas Rio Grande Valley School of Medicine

Curtis, Jeffrey University of Michigan

Custer, Brian Vitalant Research Institute

Damcott, Coleen University of Maryland

Darbar, Dawood University of Illinois at Chicago

Das, Sayantan University of Michigan

David, Sean University of Chicago

Davis, Colleen University of Washington

Daya, Michelle University of Colorado at Denver

de Andrade, Mariza Mayo Clinic

DeBaun, Michael Vanderbilt University

Deka, Ranjan University of Cincinnati

DeMeo, Dawn Brigham & Women's Hospital

Devine, Scott University of Maryland

Do, Ron Icahn School of Medicine at Mount Sinai

Duan, Qing University of North Carolina

Duggirala, Ravi University of Texas Rio Grande Valley School of Medicine

Durda, Jon Peter University of Vermont

Dutcher, Susan Washington University in St Louis

Eaton, Charles Brown University

Ekunwe, Lynette University of Mississippi

Ellinor, Patrick Massachusetts General Hospital

Emery, Leslie University of Washington

Farber, Charles University of Virginia

Farnam, Leanna Brigham & Women's Hospital

Fingerlin, Tasha National Jewish Health

Flickinger, Matthew University of Michigan

Fornage, Myriam University of Texas Health at Houston

Franceschini, Nora University of North Carolina

Fu, Mao University of Maryland

Fullerton, Stephanie M. University of Washington

Fulton, Lucinda Washington University in St Louis

Gabriel, Stacey Broad Institute

Gan, Weiniu National Heart, Lung, and Blood Institute, National Institutes of

Health

Gao, Yan University of Mississippi

Gass, Margery Fred Hutchinson Cancer Research Center

Gelb, Bruce Icahn School of Medicine at Mount Sinai

Geng, Xiaoqi (Priscilla) University of Michigan

Germer, Soren New York Genome Center

Gignoux, Chris Stanford University

Gladwin, Mark University of Pittsburgh

Glahn, David Yale University

Gogarten, Stephanie University of Washington

Gong, Da-Wei University of Maryland

Goring, Harald University of Texas Rio Grande Valley School of Medicine

Gu, C. Charles Washington University in St Louis

Guan, Yue University of Maryland

Guo, Xiuqing Lundquist Institute

Haessler, Jeff Fred Hutchinson Cancer Research Center, Women's Health

Initiative

Hall, Michael University of Mississippi

Harris, Daniel University of Maryland

Hawley, Nicola L. Yale University

He, Jiang Tulane University

Heavner, Ben University of Washington

Heckbert, Susan University of Washington

Hernandez, Ryan McGill University, University of California, San Francisco

Herrington, David Wake Forest Baptist Health

Hersh, Craig Brigham & Women's Hospital

Hidalgo, Bertha University of Alabama

Hixson, James University of Texas Health at Houston

Hokanson, John University of Colorado at Denver

Hong, Elliott University of Maryland

Hoth, Karin University of Iowa

Hsiung, Chao (Agnes)

National Health Research Institute Taiwan

Huston, Haley Blood Works Northwest

Hwu, Chii Min Taichung Veterans General Hospital Taiwan

Irvin, Marguerite Ryan University of Alabama

Jackson, Rebecca Ohio State University Wexner Medical Center

Jain, Deepti University of Washington

Jaquish, Cashell National Heart, Lung, and Blood Institute, National Institutes of

Health

Jhun, Min A University of Michigan

Johnsen, Jill Blood Works Northwest, University of Washington

Johnson, Andrew

National Heart, Lung, and Blood Institute, National Institutes of

Health

Johnson, Craig University of Washington

Johnston, Rich Emory University

Jones, Kimberly Johns Hopkins University

Kang, Hyun Min University of Michigan

Kaplan, Robert Albert Einstein College of Medicine

Kardia, Sharon University of Michigan

Kathiresan, Sekar Broad Institute

Kaufman, Laura Brigham & Women's Hospital

Kelly, Shannon Vitalant Research Institute

Kenny, Eimear Icahn School of Medicine at Mount Sinai

Kessler, Michael University of Maryland

Khan, Alyna University of Washington

Kinney, Greg University of Colorado at Denver

Konkle, Barbara Blood Works Northwest

Kooperberg, Charles Fred Hutchinson Cancer Research Center

Kramer, Holly Loyola University

Krauter, Stephanie University of Washington

Lange, Christoph Harvard School of Public Health

Lange, Ethan University of Colorado at Denver

Lange, Leslie University of Colorado at Denver

Laurie, Cathy University of Washington

Laurie, Cecelia University of Washington

LeBoff, Meryl Brigham & Women's Hospital

Lee, Jiwon Brigham & Women's Hospital

Lee, Seunggeun Shawn University of Michigan

Lee, Wen-Jane Taichung Veterans General Hospital Taiwan

LeFaive, Jonathon University of Michigan

Levine, David University of Washington

Levy, Dan National Heart, Lung, and Blood Institute, National Institutes of

Health

Lewis, Joshua University of Maryland

Li, Yun University of North Carolina

Lin, Honghuang Boston University

Lin, Keng Han University of Michigan

Lin, Xihong Harvard School of Public Health

Liu, Simin Brown University, Women's Health Initiative

Liu, Yongmei Duke University

Liu, Yu Stanford University

Loos, Ruth J.F. Icahn School of Medicine at Mount Sinai

Lubitz, Steven Massachusetts General Hospital

Lunetta, Kathryn Boston University

Luo, James National Heart, Lung, and Blood Institute, National Institutes of

Health

Mahaney, Michael University of Texas Rio Grande Valley School of Medicine

Make, Barry Johns Hopkins University

Manichaikul, Ani University of Virginia

Manson, JoAnn Brigham & Women's Hospital

Margolin, Lauren Broad Institute

Martin, Lisa George Washington University

Mathai, Susan University of Colorado at Denver

Mathias, Rasika Johns Hopkins University

McArdle, Patrick University of Maryland

McDonald, Merry-Lynn University of Alabama

McFarland, Sean Harvard University

McGarvey, Stephen Brown University

McHugh, Caitlin University of Washington

Mei, Hao University of Mississippi

Meyers, Deborah A University of Arizona

Mikulla, Julie National Heart, Lung, and Blood Institute, National Institutes of

Health

Min, Nancy University of Mississippi

Minear, Mollie National Heart, Lung, and Blood Institute, National Institutes of

Health

Minster, Ryan L University of Pittsburgh

Mitchell, Braxton D. University of Maryland

Montasser, May E. University of Maryland

Montgomery, Courtney Oklahoma Medical Research Foundation

Musani, Solomon University of Mississippi

Mwasongwe, Stanford University of Mississippi

Mychaleckyj, Josyf C University of Virginia

Nadkarni, Girish Icahn School of Medicine at Mount Sinai

Naik, Rakhi Johns Hopkins University

Naseri, Take Ministry of Health, Government of Samoa

Natarajan, Pradeep

Broad Institute, Harvard University, Massachusetts General

Hospital

Nekhai, Sergei Howard University

Nelson, Sarah C. University of Washington

Nickerson, Deborah University of Washington

North, Kari University of North Carolina

O'Connell, Jeff University of Maryland

O'Connor, Tim University of Maryland

Ochs-Balcom, Heather University at Buffalo

Paik, David Stanford University

Palmer, Nicholette Wake Forest Baptist Health

Pankow, James University of Minnesota

Papanicolaou, George National Heart, Lung, and Blood Institute, National Institutes of

Health

Parker, Margaret Brigham & Women's Hospital

Parsa, Afshin University of Maryland

Penchev, Sara National Jewish Health

Peralta, Juan Manuel University of Texas Rio Grande Valley School of Medicine

Perez, Marco Stanford University

Perry, James University of Maryland

Peters, Ulrike Fred Hutchinson Cancer Research Center, University of

Washington

Peyser, Patricia University of Michigan

Phillips, Lawrence S Emory University

Phillips, Sam University of Washington

Pollin, Toni University of Maryland

Post, Wendy Johns Hopkins University

Powers Becker, Julia University of Colorado at Denver

Preethi Boorgula, Meher University of Colorado at Denver

Preuss, Michael Icahn School of Medicine at Mount Sinai

Prokopenko, Dmitry Harvard University

Psaty, Bruce University of Washington

Qasba, Pankaj National Heart, Lung, and Blood Institute, National Institutes of

Health

Qiao, Dandi Brigham & Women's Hospital

Qin, Zhaohui Emory University

Rafaels, Nicholas University of Colorado at Denver

Raffield, Laura University of North Carolina

Ramachandran , Vasan S. Boston University

Rao, D.C. Washington University in St Louis

Rasmussen-Torvik, Laura Northwestern University

Ratan, Aakrosh University of Virginia

Redline, Susan Brigham & Women's Hospital

Reed, Robert University of Maryland

Regan, Elizabeth National Jewish Health

Reiner, Alex Fred Hutchinson Cancer Research Center, University of

Washington

Reupena, Muagututi'a

Sefuiva

Lutia I Puava Ae Mapu I Fagalele

Rice, Ken University of Washington

Rich, Stephen University of Virginia

Roden, Dan Vanderbilt University

Roselli, Carolina Broad Institute

Rotter, Jerome Lundquist Institute

Ruczinski, Ingo Johns Hopkins University

Russell, Pamela University of Colorado at Denver

Ruuska, Sarah Blood Works Northwest

Ryan, Kathleen University of Maryland

Sabino, Ester Cerdeira Universidade de Sao Paulo

Sakornsakolpat, Phuwanat Brigham & Women's Hospital

Saleheen, Danish Columbia University

Salimi, Shabnam University of Maryland

Salzberg, Steven Johns Hopkins University

Sandow, Kevin Lundquist Institute

Sankaran, Vijay G. Broad Institute, Harvard University

Scheller, Christopher University of Michigan

Schmidt, Ellen University of Michigan

Schwander, Karen Washington University in St Louis

Schwartz, David University of Colorado at Denver

Sciurba, Frank University of Pittsburgh

Seidman, Christine Harvard Medical School

Seidman, Jonathan Harvard Medical School

Sheehan, Vivien Baylor College of Medicine

Shetty, Amol University of Maryland

Shetty, Aniket University of Colorado at Denver

Sheu, Wayne Hui-Heng Taichung Veterans General Hospital Taiwan

Shoemaker, M. Benjamin Vanderbilt University

Silver, Brian UMass Memorial Medical Center

Silverman, Edwin Brigham & Women's Hospital

Smith, Jennifer University of Michigan

Smith, Josh University of Washington

Smith, Nicholas University of Washington

Smith, Tanja New York Genome Center

Smoller, Sylvia Albert Einstein College of Medicine

Snively, Beverly Wake Forest Baptist Health

Sofer, Tamar Brigham & Women's Hospital

Sotoodehnia, Nona University of Washington

Stilp, Adrienne University of Washington

Streeten, Elizabeth University of Maryland

Su, Jessica Lasky Brigham & Women's Hospital

Sung, Yun Ju Washington University in St Louis

Sylvia, Jody Brigham & Women's Hospital

Szpiro, Adam University of Washington

Sztalryd, Carole University of Maryland

Taliun, Daniel University of Michigan

Tang, Hua Stanford University

Taub, Margaret Johns Hopkins University

Taylor, Kent D. Lundquist Institute

Taylor, Simeon University of Maryland

Telen, Marilyn Duke University

Thornton, Timothy A. University of Washington

Tinker, Lesley Women's Health Initiative

Tirschwell, David University of Washington

Tiwari, Hemant University of Alabama

Tracy, Russell University of Vermont

Tsai, Michael University of Minnesota

Vaidya, Dhananjay Johns Hopkins University

VandeHaar, Peter University of Michigan

Vrieze, Scott University of Colorado at Boulder, University of Minnesota

Walker, Tarik University of Colorado at Denver

Wallace, Robert University of Iowa

Walts, Avram University of Colorado at Denver

Wan, Emily Brigham & Women's Hospital

Wang, Fei Fei University of Washington

Wang, Heming Brigham & Women's Hospital, Partners.org

Watson, Karol University of California, Los Angeles

Weeks, Daniel E. University of Pittsburgh

Weir, Bruce University of Washington

Weiss, Scott Brigham & Women's Hospital

Weng, Lu-Chen Massachusetts General Hospital

Willer, Cristen University of Michigan

Williams, Kayleen University of Washington

Williams, L. Keoki Henry Ford Health System

Wilson, Carla Brigham & Women's Hospital

Wilson, James Beth Israel Deaconess Medical Center

Wong, Quenna University of Washington

Xu, Huichun University of Maryland

Yanek, Lisa Johns Hopkins University

Yang, Ivana University of Colorado at Denver

Yang, Rongze University of Maryland

Zaghloul, Norann University of Maryland

Zekavat, Maryam Broad Institute

Zhang, Yingze University of Pittsburgh

Zhao, Snow Xueyan National Jewish Health

Zhao, Wei University of Michigan

Zhi, Degui University of Texas Health at Houston

Zhou, Xiang University of Michigan

Zhu, Xiaofeng Case Western Reserve University

Zody, Michael New York Genome Center

Zoellner, Sebastian University of Michigan

TOPMed Population Genetics Working Group

Beame, David

Bowers, Michael

Browning, Sharon

Challagundla, Lavanya

P., Matthew

Daya, Michelle

de, Mariza

Deka, Ranjan

Do, Ron

Francioli, Laurent

Gao, Yan

Gazal, Steven

Gogarten, Stephanie

Gutierrez-Arcelus, Maria

Hall, Ira

Harris, Daniel

Harris, Kelley

Hartman, Kevin

Hernandez, Ryan

Hodonsky, Chani

Raman, Kruthika

Jain, Deepti

Jiang, Jicai

Johnson, Andrew

Johnston, Rich

Jordan, Daniel

Justice, Anne

Min, Hyun

Keely, Addison

Kelly, Tanika

Kessler, Michael

Laurie, Cathy

Liu, Xiaoming

Loesch, Douglas

Luo, Yang

MacArthur, Daniel

Manichaikul, Ani

Mathias, Rasika

McHugh, Caitlin

Mikulla, Julie

L, Ryan

C, Josyf

Nassir, Rami

C., Sarah

Nickerson, Deborah

O'Connell, Jeff

O'Connor, Tim

Page, Grier

Papanicolaou, George

Price, Alkes

Prokopenko, Dmitry

Anne, Jennifer

Raychaudhuri, Soumya

Rotter, Jerome

Schoech, Armin

Schrider, Daniel

Seplyarskiy, Vladimir

Shetty, Amol

Sofer, Tamar

Sohail, Mashaal

Song, Wei

Sotoodehnia, Nona

Spear, Melissa

Sullivan, Patrick

R, Shamil

Szpiech, Zachary

Tang, Hua

D., Kent

A., Timothy

Tiwari, Hemant

Tong, Dominic

Torres, Raul

Vaidya, Dhananjay

Verbanck, Marie

Wehr, Kate

Weir, Bruce

Wong, Quenna

Yanek, Lisa

Yang, Qiong

Zhi, Degui

Zody, Michael

Zoellner, Sebastian